Some parts of our
main products are Rare Earths
Yttrium
Discovery
Swedish Army Lieutenant Carl Axel Arrhenius collected a black dense mineral in 1787 near the small feldspar and quartz mine at Ytterby, Sweden. Arrhenius sent the mineral to the laboratory of Bengt Reinhold Geijer of the Royal Mint of Sweden, who published a short description of the mineral (Geijer, 1788). Geijer wrote that he forwarded the "specimen of a heavy stone which one of my friends, Hr. Lieut. Arrenhius found" to Finnish chemist Johan Gadolin at the University of Abo, Finland. In 1794, Johan Gadolin analyzed and discovered approximately 38 percent of a new "earth" in the new heavy mineral ytterbite (later renamed gadolinite). In 1797, Anders G. Ekeberg of Uppsala confirmed the findings of Gadolin and proposed the name gadolinite for the mineral to honor Johan Gadolin and yttria for the "new earth" (Weeks and Leicester, 1968, p. 667). Yttrium is named for the mine location in Sweden where the yttrium-bearing mineral was discovered.
Definition
Yttrium is a silvery metallic dark grey lustrous metal that is relatively stable in air. Finely divided yttrium metal is very unstable in air and turnings of the metal will ignite at temperatures above 400 °C. The metal is soft and ductile. It has a hexagonal close packed structure, a density of 4.478 gm/cm3, a melting point of 1522 °C, and a boiling point of 3338 °C. Yttrium oxide, or yttria, occurs as a sesquioxide with the formula Y2O3. The oxide is a white powder with a specific gravity of 5.0 gm/cm3 and a formula weight of 225.81.
Preparation of Metal
Yttrium metal is typically prepared by calciothermic reduction of the trihalide, typically YF3, in a tantalum crucible. A tungsten crucible can be used if an impurity level of 0.07 atomic weight percent tungsten could be tolerated. Yttrium metal has a high melting point with a vacuum melting temperature of 1850 °C, similar to Gd, Tb, and Lu. The high vacuum melting temperature necessitates a distillation step to remove tantalum impurities introduced during the reduction and vacuum melting steps. The distillation process is done in a tungsten crucible and occurs at a slow rate to keep impurities at a low level. A vacuum of better than 1.3 x 10-6 Pa is needed (Beaudry and Gschneidner, Jr., 1978).
Source
Large resources of yttrium in monazite and xenotime are available worldwide in ancient and recent placer deposits, carbonatites, uranium ores, and weathered clay deposits (ion adsorption ore). It occurs in the Earth's crust at an average concentration of 33 parts per million. Additional large subeconomic resources of yttrium occur in apatite-magnetite-bearing rocks, deposits of niobium-tantalum minerals, non-placer monazite bearing deposits, sedimentary phosphate deposits, and uranium ores, especially those of the Blind River District near Elliot Lake, Ontario, Canada, which contain yttrium in brannerite, monazite, and uraninite. Additional resources in Canada are contained in allanite, apatite, and britholite at Eden Lake, Manitoba; allanite and apatite at Hoidas Lake, Saskatchewan; fergusonite and xenotime at Nechalacho (Thor Lake), Northwest Territories; and eudialyte (Y), mosandrite, and britholite at Kipawa, Quebec. It occurs in various minerals in differing concentrations and occurs in a wide variety of geologic environments, including alkaline granites and intrusives, carbonatites, hydrothermal deposits, laterites, placers, and vein-type deposits (Hedrick, 2010).
Mining
Yttrium is mined from a variety of ore minerals and deposits using various methods. Monazite and xenotime are recovered from heavy mineral sands (specific gravity >2.9) deposits in various parts of the world as a byproduct of mining zircon and titanium minerals or tin minerals. The heavy mineral sands are recovered using floating dredges or surface excavation by shovels, front loaders, or water jet methods. Vein monazite has been mined by hardrock methods in South Africa and the United States. Yttrium has also been recovered from uranium raffinates from in the Elliot Lake region of Canada. In Kyrgyzstan, yttrium was recovered using hard rock methods from synchysite (Y) from the open pit Kutessai II deposit near Aktyuz. Argillaceous marine sediments enriched in fossil fish remains at the Melovie deposit in Kazakhstan were previously recovered for their uranium and rare earth content, including yttrium. The main source of the world's yttrium is the ion adsorption lateritic clays in the southern provinces of China, primarily Fujian, Guangdong, and Jiangxi, with a lesser number of deposits in Guangxi and Hunan. These deposits are mined by leaching methods.